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Purpose: To investigate two deep learning-based modeling schemes for predicting short-term risk of
developing breast cancer using prior normal screening digital mammograms in a case-control setting.
Methods: We conducted a retrospective Institutional Review Board-approved study on a case-con-
trol cohort of 226 patients (including 113 women diagnosed with breast cancer and 113 controls)
who underwent general population breast cancer screening. For each patient, a prior normal (i.e.,
with negative or benign findings) digital mammogram examination [including mediolateral oblique
(MLO) view and craniocaudal (CC) view two images] was collected. Thus, a total of 452 normal
images (226 MLO view images and 226 CC view images) of this case-control cohort were analyzed
to predict the outcome, i.e., developing breast cancer (cancer cases) or remaining breast cancer-free
(controls) within the follow-up period. We implemented an end-to-end deep learning model and a
GoogLeNet-LDA model and compared their effects in several experimental settings using two mam-
mographic view images and inputting two different subregions of the images to the models. The pro-
posed models were also compared to logistic regression modeling of mammographic breast density.
Area under the receiver operating characteristic curve (AUC) was used as the model performance
metric.
Results: The highest AUC was 0.73 [95% Confidence Interval (CI): 0.68–0.78; GoogLeNet-LDA
model on CC view] when using the whole-breast and was 0.72 (95% CI: 0.67–0.76; GoogLeNet-
LDA model on MLO + CC view) when using the dense tissue, respectively, as the model input. The
GoogleNet-LDA model significantly (all P < 0.05) outperformed the end-to-end GoogLeNet model
in all experiments. CC view was consistently more predictive than MLO view in both deep learning
models, regardless of the input subregions. Both models exhibited superior performance than the per-
cent breast density (AUC = 0.54; 95% CI: 0.49–0.59).
Conclusions: The proposed deep learning modeling approach can predict short-term breast cancer
risk using normal screening mammogram images. Larger studies are needed to further reveal the pro-
mise of deep learning in enhancing imaging-based breast cancer risk assessment. © 2019 American
Association of Physicists in Medicine [https://doi.org/10.1002/mp.13886]
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1. INTRODUCTION

Digital mammography is a routine screening examination for
early detection of breast cancer. Breast density measures the
amount of fibroglandular (i.e., dense) tissue imaged on a
mammogram, which is mainly assessed in current clinical
practice using the qualitative Breast Imaging and Reporting
Data System (BI-RADS) density categories.1 Quantitative
breast density measures can also be computed using auto-
mated computer programs such as LIBRA,2 Quantra,3 Vol-
para4), etc. Both BI-RADS-based qualitative breast density
categories and computer-generated quantitative density mea-
sures have been shown to be associated with breast cancer
risk.5–8

In addition to breast density, studies have shown that the
mammographic imaging texture features of breast tissue are
also related to breast cancer risk.9,10 Texture descriptors such
as energy, contrast, correlation, etc. compute the local proper-
ties at each pixel and derive a set of statistics information
from the local properties’ distribution. Hence, texture features
capture some of the more subtle and localized micro-struc-
tural characteristics of breast tissue that may be associated
with breast cancer risk, potentially by a different mechanism
from a coarse measure of amount of dense parenchyma. The
connection between breast density and texture is still not
well-understood with regard to breast cancer risk prediction.

Current breast cancer screening guidelines are mainly
based on age, a major risk factor for development of breast
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cancer. However, risk-based screening approaches tailored
with regards to an individual’s risk are increasingly being
advocated. Such an approach requires accurate risk assess-
ment, taking all known important risk factors into proper con-
sideration. Going beyond the already-known risk markers, in-
depth analysis of digital mammogram image contents for
unexplored mammographic imaging features potentially asso-
ciated with breast cancer risk merits further investigation,
particularly through use of newly emerged deep learning
techniques.

Deep learning is a subset of machine learning and a repre-
sentative technique of the broader concept of artificial intelli-
gence (AI). Lately, deep learning modeling has shown great
promise in many AI applications, including biomedical imag-
ing analysis. Deep convolutional neural networks (CNNs)
have been studied for analyzing mammographic images such
as breast density category classification,11–15 breast anatomy
classification,16 mass detection,17–20 prediction,21 and seg-
mentation,22 etc.23,24 The unique nature of deep learning is
that, massive data are fed to the CNN model which then auto-
matically learns/extracts intrinsic imaging traits/features that
are associated with the model output (i.e., outcome). This is
fundamentally different from existing feature engineering
mechanisms that require predefined imaging features/descrip-
tors. Feature engineering for clinical tasks can be constrained
because the medical domain knowledge is usually abstract,
tacit, and hard to describe by exact mathematical descriptors.
To date, studies have shown that feature extraction using deep
learning models outperformed predefined imaging descrip-
tors in many scenarios.25–29 The purpose of this study was to
investigate a deep learning-based CNN modeling approach to
predict short-term risk of developing breast cancer using nor-
mal screening mammograms of a case-control study cohort.

2. MATERIALS AND METHODS

2.A. Study cohort and imaging dataset

We performed a retrospective study that was compliant
with the Health Insurance Portability and Accountability Act
and received Institutional Review Board (IRB) approval.
Informed consent from patients was waived as this was a ret-
rospective study. A case-control cohort of 226 women (1:1
case-control ratio) who underwent general population breast
cancer screening in 2013 at our institution were studied.
Cases were 113 women diagnosed with breast cancer [includ-
ing invasive cancers, ductal carcinoma in situ (DCIS), and
their mixture]. The cancer cases were newly diagnosed unilat-
eral breast cancer confirmed by pathology (interval cancers
not included). Asymptomatic cancer-free controls were
matched by patient age (�3 years) and year of imaging
(�1 year) to the cancer cases. All studied women did not
have any prior biopsy or recall on digital mammography. For
each patient in the cohort, the most recent (at least 1 year ear-
lier) normal (i.e., BI-RADS 1 or 2) mammogram examination
prior to the patient outcome (i.e., cancer vs breast cancer-free
status) was retrospectively identified for analysis: for the 113

cancer cases, we used the normal images of the unilateral
breast that later developed breast cancer; for the 113 controls,
we used the prior normal images of the side-matched breast
to the paired cancer case. Both the mediolateral oblique
(MLO) and craniocaudal (CC) view on the processed (i.e.,
“FOR PRESENTATION”) images were analyzed. In total,
we collected 226 normal mammogram examinations and
used 452 mammogram images of the 226 unilateral breasts
(each with MLO and CC view images). All mammogram
examinations were acquired by the Hologic (Marlborough,
MA) full-field digital mammography units, with two different
models (i.e., Lorad Selenia and Selenia Dimensions) and
similar imaging protocol parameters and automatic exposure
control settings.

2.B. Deep learning modeling for predicting short-
term breast cancer risk

We proposed a two-class deep learning model to classify
the prior normal mammogram images of the case-control
cohort to predict the outcome of breast cancer vs breast can-
cer-free status, which indicates a short-term (i.e., the interval
between the acquisition time of normal images and the time
of outcome) probability/risk of developing breast cancer.
Specifically, our model was implemented in two schemes:
one was an end-to-end CNN model using GoogLeNet 30 and
the other was in the form of a GoogLeNet combining a linear
discriminant analysis (LDA) classifier (denoted as GoogLe-
Net-LDA). Figure 1 illustrates the flowchart of the proposed
modeling schemes.

The end-to-end model was based on the original structure
of the GoogLeNet, where the 2-way softmax function was
used to provide normalized probability for binary classifica-
tion between breast cancer and breast cancer-free outcome.
The end-to-end deep learning prediction model does not
explicitly extract imaging features for offline analysis. In con-
trast, the GoogLeNet-LDA model extracts deep imaging fea-
tures offline using the fine-tuned GoogLeNet model. Note
that in this scheme the fine-tuned GoogLeNet was adapted as
a feature extractor and deep features were extracted from the
layer right before the last fully-connected layer. We compared
the performance of the end-to-end model to the GoogLeNet-
LDA model. Through this comparison, one expects to gain
insights on the effects of breast cancer risk prediction
between the end-to-end modeling mechanism and the offline
deep learning feature extraction mechanism.

The main component of our schemes was the GoogLeNet
model, which was initialized by transfer learning of the pre-
trained model on a very large imaging dataset (i.e., Ima-
geNet,29 consisting of more than one million labeled natural
images) and then fine-tuned using our own mammogram
imaging data. The fine-tuned GoogLeNet directly served as
the end-to-end prediction model. In the GoogLeNet-LDA
scheme, we re-fed all training samples to the fine-tuned Goo-
gLeNet model to extract 1024 deep imaging features from the
layer right before the last fully connected layer, followed by
the least absolute shrinkage and selection operator feature
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selection and then the LDA classifier training. In the testing
phase of the GoogLeNet-LDA model, we used the same fine-
tuned GoogLeNet model to extract the 1024 deep imaging
features and then identified the same subset features as previ-
ously selected in the training phase. The subset features were
then fed to the LDA model for testing.

In our schemes we chose to use GoogLeNet, mainly
because it has been shown effective in many applications
but also has a relatively small scale of parameters (i.e., ~5
million) in comparison to other popular CNN models (e.g.,
~60 million parameters in AlexNet31) to potentially reduce
chances of overfitting on our dataset. Our model was imple-
mented using MATLAB (R2018b) running on a super com-
puter system with the following specifications32: 9 HPE
Apollo 6500 servers, each with 8 NVIDIA Tesla V100
Graphics Processing Units (GPUs) and 16GB GPU memory,
connected by NVLink 2.0. We employed the parallel GPU
programming mechanism to accelerate mode training. A
stochastic gradient descent with momentum (SGDM) opti-
mizer was used to find optimal model parameters. We
started with a learning rate of 0.01 and dropped the learning
rate by factor 0.2 every 10 epochs. Our batch size was 30.
For preprocessing, histogram equalization was run to cali-
brate the intensity contrast across all images, and all images
were down-sampled using standard bicubic interpolation to
224 9 224 pixels from the original resolution in order to
accommodate the needs of the pretrained GoogLeNet
model.

Convolutional neural networks are known as working like
black boxes and as an effort to further understand the deep
learning modeling for our specific prediction task, we
attempted to visualize potential imaging features/regions that
are most relevant to the short-term risk prediction. To this
send, we used the class activation mapping (CAM) method,
where sample mammograms were forward propagated
through the fine-tuned GoogLeNet model and the activated
feature detectors were projected back into the original image
space to visualize the most dominant imaging features/

regions. We utilized the deepest convolutional layer in the
fine-tuned GoogLeNet (i.e., inception_5b-pool_proj) for
CAM feature map visualization.

2.C. Model evaluation and analysis plans

We used patientwise 10-fold cross-validation to reduce
chances of overfitting and to evaluate the general prediction
performance of the two deep learning models. The same fold
split was applied to the two models for a fair comparison.
Area under the receiver operating characteristic (ROC) curve
(AUC)33 was calculated as the model performance metric.
The average of the AUCs across the 10-fold validations was
reported. We used the bootstrap test method to compare the
difference between two AUCs (P < 0.05 was considered sta-
tistically significant).

In order to evaluate the effects of the two mammographic
views, i.e., CC and MLO, we performed experiments by
using the CC view images only, MLO view images only, and
their combination. The combination mode is implemented in
a simple format of placing the two view images in two differ-
ent channels of the deep learning model input. All these
experiments used the same cross-validation and evaluation
settings for a fair comparison of the model performance.

Furthermore, the deep learning models were assessed sep-
arately by two different kinds of subregional inputs of the
mammogram images: (a) the whole-breast region and (b) the
dense breast region only. The performance was compared to
explore the potential differences on the effects of the imaging
features identified over the whole-breast or the dense breast
region only, in relation to the prediction of breast cancer risk.
To do so, the whole-breast region and dense breast tissue
were automatically separated from the nonbreast region (i.e.,
air and chest muscles) and fatty tissue in each image by the
previously evaluated LIBRA program2,46 (Fig. 2).

Finally, we also compared effect of the existing imaging
marker, namely, mammographic breast density. We employed
automated computer methods (LIBRA2) to compute the

FIG. 1. The proposed schemes for deep learning-based modeling for short-term breast cancer risk prediction. The top half is an end-to-end prediction model
using fine-tuned GoogLeNet, which is also adapted as an offline deep imaging feature extractor in the GoogLeNet-LDA model (bottom half).

Medical Physics, 47 (1), January 2020

112 Arefan et al.: Deep learning for predicting cancer risk 112

 24734209, 2020, 1, D
ow

nloaded from
 https://aapm

.onlinelibrary.w
iley.com

/doi/10.1002/m
p.13886, W

iley O
nline L

ibrary on [15/10/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



area-based percentage breast density and utilized logistic
regression modeling to predict the short-term risk.

3. RESULTS

Table I summarizes the key characteristics of the study
cohort and imaging parameters. The average age at the mam-
mogram examination was 60.1 � 10.0 years old for the con-
trols and 61.3 � 10.3 years old for the cancer cases. Since
the acquisition time of the analyzed normal mammogram
examinations, the average follow-up length for patient out-
come was 1.46 (range 1–3) years for women later diagnosed
with breast cancer and 1.48 (range 1–4) years for women who
remained breast cancer free by the time of the study. The rate
of family history of breast cancer was similar between cancer
cases (35%) and controls (31%). Only a small portion of the
study cohort was premenopausal (12% for cancer cases and
14% for controls).

The deep learning model performance AUCs were com-
pared in Table II with respect to different experimental set-
tings. The first observation was that the GoogLeNet-LDA
model was significantly superior in performance than the
end-to-end GoogLeNet model (all P-values < 0.05 for corre-
sponding AUC comparisons). In terms of the two views, CC
view consistently outperformed MLO view in both the two
models, regardless the input subregion was whole-breast or
dense tissue only. When the two view images were combined,
the model performance was improved in comparison to using
either of the two views alone when the input was the dense
tissue: AUC of the GoogLeNet was 0.67 (MLO + CC), sig-
nificantly higher than 0.64 (CC; p = 0.022) and 0.62 (MLO;
p = 0.002); AUC of the GoogLeNet-LDA was 0.72
(MLO + CC), significantly higher than 0.70 (CC; p = 0.021)
and 0.67 (MLO; p = 0.002). However, the AUCs of
MLO + CC view were not increased in comparison to using
either of the two views alone when the input was whole-
breast, regardless using the GoogLeNet or GoogLeNet-LDA
model. Overall, among all the experiments, the highest AUC
was 0.73 (GoogLeNet-LDA; CC view) when using the
whole-breast and was 0.72 (GoogLeNet-LDA; MLO + CC
view) when using the dense tissue, respectively, for

predicting the short-term breast cancer risk. The difference of
the two AUCs (0.73 vs 0.72) was not statistically significant
(p = 0.26). Figure 3 shows six selected representative ROC
curves: four from all the four experiments using CC view and
two from using the MLO + CC view and dense tissue as
input.

Based on the results shown in Table II, the AUCs of the
two proposed deep learning models were consistently higher
than the AUC of 0.54 (95% CI: 0.49–0.59) achieved by the
area-based percentage breast density.

In Fig. 4, we showed examples of the CAM-based feature
map visualization for several sample images selected from
both the case and control groups. The color bar indicates the
importance level (highest 100 and lowest 0) of a specific
region in the images in predicting the short-term risk. These
examples implied that roughly the central image regions
behind the nipple were more relevant/predictive for this speci-
fic prediction task.

4. DISCUSSION

In this study, we investigated a deep learning-based
approach aiming to predict short-term breast cancer risk on a
case-control cohort using normal mammogram images. We
proposed an end-to-end deep learning model as well as a
GoogLeNet + LDA model coupled with explicit deep feature
extraction for offline analysis. We evaluated the effects of the
two models in several experimental settings using different
mammographic view images and different subregions as
model input. Our results showed that both the two models
can predict short-term risk and outperformed the existing risk
factor of mammographic breast density in this specific patient
cohort. To the best of our knowledge, this is the first study
that investigated and compared two different modeling
schemes by deep learning using prior normal screening mam-
mographic images to predict short-term breast cancer risk in
a case-control setting.

Deep learning represents a data-driven method to investi-
gate imaging features. It automatically learns and hierarchi-
cally organizes essential traits (features), which is
fundamentally different from traditional manual feature

FIG. 2. Two different kinds of subregional inputs for the two deep learning models: One is the whole-breast region (red contours) and the other is the dense breast
tissue only (green contours). The two regions were segmented using an automated computer method. [Color figure can be viewed at wileyonlinelibrary.com]
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TABLE I. Patient and imaging characteristics of the 226 patients including
113 breast cancer cases and 113 matched controls.

Patient/Imaging
characteristics

Cancer cases
(N = 113)

Controls
(N = 113)

n (%) n (%)

Age (years): mean � SD
(range)

61.3 � 10.3 (41–89) 60.1 � 10.0 (41–83)

Follow-up length (years):
mean � SD (range)

1.46 � 0.63 (1–3) 1.48 � 0.76 (1– 4)

Menopausal status

Premenopausal 14 (12%) 16 (14%)

Postmenopausal 83 (73%) 82 (73%)

Hysterectomy 9 (8%) 10 (9%)

Sterilization (bilateral
oophorectomy &
hysterectomy)

4 (4%) 4 (4%)

Uncertain 3 (3%) 1 (1%)

Known or test positive
pathogenic BRCA1/2
mutation

0 (0%) 0 (0%)

Personal history of
breast cancer

0 (0%) 0 (0%)

Family history of breast cancer

No family history 71 (63%) 77 (68%)

At least 1 1st degree
relatives

24 (21%) 14 (12%)

At least 1 2nd and/or
3rd degree relatives

16 (14%) 21 (19%)

Unknown 2 (2%) 1 (1%)

Personal or family
history of ovarian
cancer

1 (1%) 3 (3%)

Mammographic density (visual BI-RADS density description)

Fatty 6 (5%) 8 (7%)

Scattered
fibroglandular tissue

59 (52%) 55 (49%)

Heterogeneously dense 46 (41%) 45 (40%)

Extremely dense 1 (1%) 5 (4%)

Breast thickness and dose

Breast thickness (cm):
mean � SD

5.95 � 1.34 5.80 � 1.19

Organ dose (mGy), CC
view: mean � SD

1.72 � 0.52 1.80 � 0.64

Organ dose (mGy),
MLO view: mean � SD

1.90 � 0.56 1.94 � 0.59

Tumor size

≤2 cm 69 (61.06%) -

2–5 cm 10 (8.85%) -

>5 cm 3 (2.65%) -

Unknown/missing 31 (27.43%) -

Cancer type

Invasive ductal
carcinoma (IDC)

40 (35.4%) -

Invasive lobular
carcinoma (ILC)

8 (7.08%) -

IDC and DCIS 29 (25.66%) -

DCIS 36 (31.86%) -
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engineering.34 Manual feature engineering is about crafting
well-defined features (such as shape, contour, texture) to
directly describe domain knowledge, such as imaging appear-
ance characteristics.35,36 Researchers have crafted hundreds
of computer features9,35,37 and tested them in many applica-
tions in a trial-and-error manner to identify those that work

best for specific tasks.38 However, it is not always straightfor-
ward to translate qualitative and tactic radiological domain
knowledge to exact mathematic descriptors to support manual
feature engineering. In addition, it becomes even more chal-
lenging when the domain knowledge itself is poorly under-
stood and is still under investigation to gain in-depth insights

FIG. 3. Six representative ROC curves for predicting short-term breast cancer risk: four from all the four experiments using CC view and two from using the
MLO + CC view and dense tissue as input.

FIG. 4. Feature map visualization for four selected sample images from the control (left two samples) and case (right two samples) groups. The color bar indi-
cates the importance level (highest 100 and lowest 0) of a specific region in the images in predicting the short-term risk. [Color figure can be viewed at wileyon
linelibrary.com]
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from data (like the problem of risk biomarker identification
from normal images). Regarding imaging-based risk biomar-
ker, studies have shown that breast density (both qualitative
and quantitative measures) and certain texture measures are
associated with breast cancer risk, but the imaging content
characteristics in relation to breast cancer risk are still not
fully understood, and it is likely that there are forms of poten-
tial imaging features/traits that are more relevant or essential
to breast cancer risk. This represents the exact motivation of
this study, i.e., we seek to implement a deep learning
approach to discover potential “new” or more predictive risk
markers directly from the mammographic imaging data fed to
the CNN models. Our results indicate that both the two deep
learning models are able to identify certain deep imaging fea-
tures for improved breast cancer risk prediction when com-
pared to the simple measure of breast density.

In terms of the two mammographic views, the CC view
images showed overall superior performance than the MLO
view. The mechanism behind this observation is uncertain,
but some previous studies also showed that CC view images
exhibited higher performance than MLO view in computer-
aided diagnosis tasks.39 When the two views were combined,
one may expect to observe an increase in AUC than using
either of the two views alone. Our results showed that it was
indeed the case when using the dense breast tissue as model
input, but not, when the input was the whole-breast region.
We believe further investigation is needed in order to better
assess the roles and effects of the two views in this kind of
breast cancer risk prediction study.

In terms of the two different subregional inputs to the deep
learning models, the effects varied with respect to different
experimental settings (as seen in Table II). Simply speaking,
the highest AUC on the whole-breast (0.73 on CC view) was
very close to the highest AUC on the dense tissue (0.72 on
MLO + CC view), where the AUC difference is not statisti-
cally significant. This finding may indicate that the most pre-
dictive imaging characteristics of breast cancer risk are still
within the dense/fibroglandular tissue. Nevertheless, whether
a gain can be achieved by analyzing the extended region of
whole breast is still worth further study by using large data-
sets in future work.

Generally speaking, deep learning desires a large number
of training samples. Our study included 226 patients and 452
images, which was not considered at the large scale. We
would like to point out that our models benefitted from the
pretraining on the huge imaging dataset, i.e., ImageNet.31

Although ImageNet is not a medical imaging dataset, recent
studies have shown that pretraining on ImageNet followed by
fine-tuning can substantially improve model performance in
many medical image-based tasks, such as chest pathology
identification,40,41 lung disease classification,42 and colono-
scopy frame classification.28 Hence, our results may be attri-
butable to the use of the pretraining on ImageNet and fine-
tuning by our own data.

The deep imaging features could be developed to breast
cancer risk biomarkers after sufficient validation. Those fea-
tures were identified automatically by deep learning, without

any manual feature engineering a priori. Deep learning has
been viewed as working like a black-box,4 lacking inter-
pretability of the features. In the attempts of trying to under-
stand/interpret these deep imaging features identified by our
deep learning models, we visualized the feature activation
maps to highlight the regions of importance/relevance in the
images in relation to the specific prediction tasks. As indi-
cated in Fig. 4, the central regions behind the nipple may con-
tain the most predictive/relevant deep imaging features for
short-term breast cancer risk prediction. While we can visual-
ize these regions in images, it is still difficult though to pro-
vide more meaningful interpretation of these regions and
deep features in an intuitive or perceptible manner to human
radiologists. If we were able to do that, it would provide new
insights/knowledge to enhance training/education to radiolo-
gists in mammographic image reading. At this time, deep
learning feature interpretation is still an active research topic
with increasing attention and efforts. We are very positive
that further technical advances will contribute to resolve this
key issue in future work.

The proposed deep learning modeling has a great potential
to improve current breast cancer risk prediction. At the con-
cept level, after thorough validation, the CNN models we
built can be used to predict for example a short-term (e.g.,
1.5 years in this study) risk for developing breast cancer, and
if we were able to use even earlier (e.g., 5 years prior to out-
come) normal mammogram images to build these models, it
will be possible to estimate a longer (e.g., 5-year) risk. Of
course, here the prediction of risk is merely based on mam-
mographic images and this is different from existing risk
models such as the Gail model,43,44 BCSC model,45 etc. It is,
however, possible to combine deep learning modeling and
other known clinical/personal risk factors to build more pow-
erful breast cancer risk models.

The strengths of our study include: (a) using two different
deep learning modeling schemes and compared their effects
and (b) analyzing the normal mammogram images prior to
outcome in a matched case-control setting for risk prediction
by deep learning. Our study has some limitations. Despite
using transfer learning, the sample size is still considered rel-
atively small and this is also a single center retrospective
study. We only used mammogram images acquired from a
single vendor; more extensive testing of our models on other
equipment, imaging protocols, and parameter settings is
needed. We plan to further evaluate our methods and findings
in a larger multicenter mammogram imaging dataset. In addi-
tion, our analyses may be enhanced from a second review of
the prior normal images to examine the initial assessment.
Finally, as mentioned earlier, the technical immaturity of
CNN feature interpretation did not enable us to well perceive
the essential deep imaging features identified by our deep
learning models. We understand that it would not be suffi-
cient to gain clinical trust for a prediction model lacking
meaningful feature interpretability. We position this work as
a preliminary investigation to demonstrate the feasibility and
potential of the proposed deep learning approach for address-
ing breast cancer risk prediction.
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5. CONCLUSIONS

In summary, we proposed and evaluated the effects of two
deep learning-based models to predict short-term breast can-
cer risk using prior normal digital mammogram images of a
case-control cohort. Our study showed that the GoogLeNet-
LDA model outperformed the end-to-end GoogLeNet model,
and both the two deep learning models have superior perfor-
mance than mammographic breast density. This preliminary
work demonstrates the feasibility and promise of applying
deep learning to enhance breast cancer risk assessment, war-
ranting larger multicenter studies to further evaluate the mod-
els and findings.
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